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Code Under Construction: Neural Coding
Over Development
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Developing animals must begin to interact with the world before their neural
development is complete. This means they must build neural codes appro-
priate for turning sensory inputs into motor outputs adaptively as their neural
hardware matures. We review some recent progress in the understanding of
the relationship between neural coding and neural circuit development. We
focus particularly on neural coding in the context of topographic maps and
spontaneous activity, as well as receptive field and circuit development,
drawing on examples from both mammalian visual cortex and fish optic
tectum. Overall we suggest that neural coding strategies during development
may be highly dynamic.

Building the Neural Code
Starting from a single cell, an organism must build not only a body but also a brain to
sense the world and react appropriately. As any parent will appreciate, for humans this
process of refinement takes many years. By contrast, for some animals the basic neural
tools required for autonomous survival must be established much more rapidly. For
instance, a larval zebrafish is able to use vision to hunt small, fast-moving prey such
as Paramecia within 5 days of the fertilization of the egg [1,2]. During this brief period the
fish must build neural computations which allow it to map noisy and unreliable sensory
inputs into appropriate motor actions. Furthermore, these computations must be contin-
uously updated as the animal grows and gains more experience of the world in which it
must survive.

From this functional perspective, building a nervous system means constructing a neural code.
Neural encoding (see Glossary) is the process of converting sensory stimuli into neural
activity, which often takes the form of complex temporal patterns of action potentials across
many neurons [3]. Neural decoding is the reverse process of extracting the information
contained within these patterns. The neural code must satisfy many constraints, most impor-
tantly that of transmitting large amounts of information using small amounts of energy [4].
Crucially, the code that optimizes this constraint depends on the statistics of the environment
[5]. Thus, through a combination of evolutionary experience encoded in genetic programs and
dynamic plasticity of neural connections, an organism must adapt its nervous system to the
world it inhabits.

In recent years great progress has been made in understanding nervous system development
[6,7] and some of the key mathematical principles relevant to neural coding [8–11]. While some
notable earlier works did explicitly address the links between the two (e.g., [12]), we suggest
here that it is timely to consider these links again in the light of this new information. We first
introduce some of the key mathematical principles underlying neural coding. We then discuss
their relevance to some specific issues in neural development, namely topographic maps,
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spontaneous activity, and receptive field and neural circuit development, with a particular focus
on the mammalian visual cortex and fish optic tectum.

Neural Encoding and Decoding
Neural activity is generally probabilistic: the same stimulus usually evokes slightly different
responses each time it is presented. Probability theory therefore plays a central role in the
mathematics of neural coding. The key equation relating encoding and decoding is Bayes’
theorem. This gives the posterior probability P(s|r) that the stimulus is s given that response r is
observed (i.e., the decoding of response r) in terms of the probability P(r|s) that stimulus s
generates response r (also called the likelihood), the probability P(r) of observing r over all
stimuli, and the probability P(s) of observing s, also called the prior probability of s (mathematical
details are given in Box 1; Figure 1 gives schematic illustrations of the principles discussed in
this section). Given substantial evidence that the brain utilizes Bayesian principles (e.g.,
[13–15]), it is thus apparent that some knowledge of P(s), namely how likely each different
type of stimulus is in the world, is important for decoding. While philosophers have argued for
centuries regarding the extent to which the brain is a tabula rasa, it is clear that an organism’s
knowledge of P(s) is at least modified by its interaction with the environment. Thus a key part of
neural development can be seen as learning about P(s).

Advances in experimental techniques now allow the activity of many neurons to be recorded
simultaneously. This has led to much theoretical interest in population coding, in other words
how neurons conspire in groups to represent information [16]. One case is that neurons act
independently, in other words the probability of a neuron firing over the stimulus ensemble is
independent of the probability of any other neuron firing (sometimes called factorial coding). A

Glossary
Efficient coding: an efficient neural
code is one that minimizes the
number of spikes (or other measure
of energy cost) necessary to convey
a particular set of signals. For
instance, visual images are highly
redundant (neighboring pixels tend to
have similar values), and thus pixel-
based codes are generally not
efficient.
Factorial code: a code where the
probability of each neuron firing over
the stimulus ensemble is statistically
independent of the probability of any
other neuron firing. A weaker case is
a decorrelation code where second-
order correlations are zero but high-
order correlations may not be.
Independent components
analysis (ICA): the separation of a
signal into components which are
statistically independent.
Maximum likelihood (ML) and
maximum a posterior (MAP)
decoding: In a neural context, ML
decoding usually means choosing
the stimulus that is most likely to
have generated an observed
response, while MAP decoding
means choosing instead the stimulus
that is most likely given the observed
response. ML and MAP decoding
may give different answers when not
all stimuli are equally likely.
Neural encoding and decoding:
encoding refers to the mapping from
a stimulus to a neural response,
while decoding refers to the mapping
from a neural response to a stimulus.
In general these mappings are
probabilistic: each stimulus can
generate a range of responses, and
each response could have been
generated by a range of stimuli.
Noise correlations: two neurons
are noise-correlated if their
responses to the same stimulus are
correlated. This indicates that a
process causing the response of
each neuron to vary is shared
between the two neurons.
Optimal decoder: a decoder which
optimizes some measure of the
quality of the decoding, for instance
its variance.
Principal components analysis
(PCA): the projection of data from a
high-dimensional space to a low-
dimensional space which preserves
the maximum amount of variance in
the data.

Box 1. Encoding, Decoding and Bayes Theorem

The prior P(s), likelihood P(r|s) (encoding) and posterior P(s|r) (decoding) distributions defined in the main text are
related via Bayes theorem:

PðsjrÞ ¼ PðrjsÞPðsÞ
PðrÞ [I]

The prior over r, P(r) can be determined by:

PðrÞ ¼
Z
s
PðrjsÞPðsÞds: [II]

There are three main approaches for decoding s. The simplest to calculate is the maximum likelihood (ML) estimate,
which is the stimulus which maximizes P(r|s). This does not require knowledge of P(s), but can produce misleading
results when some stimuli are much more likely than others. This problem is solved by the maximum a posteriori
(MAP) decoding estimate, which is the stimulus that maximizes P(s|r), but at the cost of requiring knowledge of P(s).
However, a problem with both the ML and MAP estimates is that they pick the peak of their respective distributions,
which may be misleading if these distributions are not well-summarized in this way [for instance if the mode (peak) of the
distribution is a long way from the mean]. In Bayesian inference (an imperfect name, because the MAP estimate is also
Bayesian) the estimate that minimizes a particular loss function is chosen. When this function is the squared difference
between the estimate sbayes and the true value, the estimate is given by the mean P(s|r):

sbayes ¼
Z

sPðsjrÞds [III]

However, this requires greater computational load than the ML or MAP estimates.

The above distributions clearly change over neural development. For instance, a gradual reduction in response variability
leads to more precise likelihood functions and thus better decoding, regardless which specific method is used.
However, whether there is a change in decoding strategies over development, for instance by moving from simpler
to more sophisticated estimates, is unknown. In addition, while decoding can be a very useful method for analyzing the
information content of a particular stage of neural processing, note that the real system may not explicitly perform
decoding in mapping between sensory inputs and motor outputs.
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Posterior distribution: the
probability distribution of a variable
(e.g., stimuli) taking into account
specific evidence (e.g., an evoked
neural response) relating to that
variable.
Prior distribution: the probability
distribution of a variable (e.g., stimuli)
before specific evidence (e.g., an
evoked neural response) is available
to constrain the distribution.
Sparse coding: a type of coding
where only a small proportion of
neurons are active at any moment
(population sparseness), or
alternatively each neuron is activated
only rarely (lifetime sparseness).

slightly weaker case is a decorrelation code, where second-order (but not necessarily higher-
order) correlations are zero. Neurons in the real brain are often noise-correlated, meaning that
stochastic fluctuations around the mean response are correlated between neurons. Such
correlations can both increase or decrease the amount of information encoded compared to
when noise correlations are not present [9], and affect the form of the optimal decoder
[17,18]. Another important concept in population coding is sparse coding. The term carries
two different meanings: the first is that only a few neurons are activated by each stimulus
(population sparseness [19]), whereas the second is that each neuron is activated only rarely
(lifetime sparseness [20]). As discussed below, explicitly optimizing particular measures of
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Figure 1. Principles of Neural Coding. (A) In encoding we consider the probability distribution over responses for each
stimulus. Two neurons are represented by grey circles, with their levels of activity being denoted by the shade of grey. The
probability distribution P(r|s) gives the likelihood of each response (where ‘response’ means the activity of both neurons)
generated by a particular stimulus, in this case a dog. The arrows point upwards to represent encoding. (B) In decoding we
consider the probability distribution over stimuli for each response. Given the particular response of the two neurons, P(s|r)
gives the probability of each of the three stimuli. The arrows point downwards to represent decoding. (C) In ML decoding
we ask which stimulus has the highest probability of generating the observed response pattern. We imagine here that when
the dog stimulus is presented it generates the observed response 60% of the time [P(r|dog) = 0.6], as compared to only
40% of the time for the cat stimulus [P(r|cat) = 0.4], hence the dog is the ML estimate for the stimulus given the response.
(D) In MAP decoding we ask which stimulus was most likely to have generated the response, taking into account the
relative frequencies of the stimuli. We imagine here that the probabilities of response given stimulus P(r|s) are the same as in
panel (C), but that the cat stimulus occurs in the world threefold more frequently than the dog stimulus. Now, when this
particular response occurs it is more likely to have been a cat, because the cat was more frequent than the dog (by Bayes
theorem pðcatjrÞ ¼ 0:4�0:75

0:4þ0:6 , whereas pðdogjrÞ ¼ 0:6�0:25
0:4þ0:6 ). The cat is therefore the MAP estimate for the stimulus given

the output. (E) In sparse coding (here population sparseness is shown) only a small proportion of output neurons from
the population (in this case only one) are active in response to each stimulus. (F) Two output neurons are noise-
correlated when fluctuations in their activity in response to the same stimulus are correlated. This is represented here
by four repetitions of the dog stimulus, eliciting four different but correlated responses from the output neurons. This
correlation is seen in the graph of the response of neuron 1 versus the response of neuron 2. (G) In factorial coding
the activity of each of the output neurons is statistically independent from other output neurons across the set of
stimuli, represented here by four stimuli generating four responses such that there is no correlation in the activity of
the two neurons.
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coding sparseness for sensory stimuli can lead to receptive fields matching those seen
biologically, such as orientation-selective cells in V1. Factorial and sparse coding are particular
types of efficient coding in which the overarching goal is to form codes that minimize some
energy cost, such as the number of spikes required.

Another important distinction is that spike trains can encode information (e.g., the level of
activation of a sensory receptor, or the desired activation of a particular muscle) either through a
rate code or a temporal code [21]. In the former, information is carried by the number of spikes
that occur in some time-window, while in the latter the precise times at which the spikes occur is
important. Temporal codes can carry many-fold more information per spike than rate codes
[22], but are less robust than rate codes because they require more precise time measure-
ments. While there is evidence for temporal as well as rate codes in adult animals [23,24],
whether both exist in the developing nervous system remains unclear.

Topographic Maps
A crucial part of neural development is the formation of topographic maps between brain areas,
the best-studied example being the map between the eye and the optic tectum/superior
colliculus. These maps are driven initially by molecular cues, and then are later refined by neural
activity. What role do these maps play in neural coding? A simple idea, which we refer to as
topographic coding, is that stimulus information is represented by the spatial position of neural
activity in the target structure, and is then read out by appropriately topographic maps
projecting to downstream structures. For instance, the position of a spot in the visual field
could be coded by a corresponding position of localized activity in the tectum. One of the
attractions of topographic coding is that it can be established by molecular cues and/or
spontaneous activity without sensory experience, in other words be ready to go early in
development. The size of retinal projective fields refine over development [25], but counter-
intuitively this does not strongly affect the quality of topographic coding [26] (Figure 2A).
Instead, an important limiting factor is the degree of topographic order in the map, and early
in development this is usually fairly crude. Decoding experimentally measured population
activity in the larval zebrafish tectum in response to stimuli consisting of small stationary spots
demonstrated that the decoded spot positions were often confused with each other [26].

However, other coding schemes are possible. The scheme that is under some circumstances
statistically optimal is maximum likelihood (ML) decoding (Box 1). In this context, this means
gathering statistics on the likelihood of each neuron’s level of activity given each stimulus, and
then decoding a pattern of activity over the population of neurons as the stimulus that was most
likely to have produced that pattern (usually for simplicity assuming each neuron acts inde-
pendently). Using ML decoding for the same patterns of population activity in the larval
zebrafish tectum, as mentioned above, showed almost no confusion of spot positions [26].
This demonstrates that the tectal activity contained all the information needed to accurately
decode spot position, but that topographic decoding was not a particularly effective way of
extracting that information (Figure 2B). Under some conditions topographic decoding is
statistically equivalent to ML decoding, but these conditions are almost certainly violated in
the developing nervous system. ML decoding does not explicitly use the spatial positions of the
neurons in the tectum, but it does require statistical information about the mapping between
stimuli and responses, which must be obtained from experience. Together these observations
raise the possibility that, unless topography sufficiently refines over development, a develop-
mental switch could occur between topographic and more statistically optimal types of
decoding as the animal gains more experience of the world.
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A particularly challenging aspect of retinotectal map development in fish and amphibians is that
the retina adds new neurons at the margin nearest the lens and expands radially, while the
tectum expands by adding new cells linearly along its periventricular proliferative zone. To
maintain a uniform topographic map, retinal axons must therefore continually shift their retinal
termination zones [27]. While newly added tectal neurons take a few days to functionally
integrate within tectal circuits [28], how they begin to contribute to coding from a quantitative
perspective is unknown.

Spontaneous Activity
Spontaneous neural firing begins very early in nervous system development. One of the best-
studied examples is spontaneous retinal waves. These are a robust phenomenon that is
observed across many species [29–32]. These waves occur before light transduction by
photoreceptors, and disappear around the time of eye-opening in mammals, regardless of
visual experience [33]. From a coding perspective, retinal waves have an obvious interpretation:
they are providing central structures with sensory statistics similar to those the animal will
encounter once its sensory apparatus is better developed [34]. This allows activity-dependent
learning rules to begin to adjust synaptic strengths in an appropriate direction [34,35]. Indeed
this can also provide a counterbalance to unusual sensory experience early in life. For instance,
when ferrets were raised seeing only spots of light (rather than the oriented edges that are
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Figure 2. Analyses of Topography and Spontaneous Activity in Neural Coding. (A,B) The dependence of
decoding performance on system parameters in a simple computational model of the zebrafish retinotectal system
(redrawn, with permission, from [26]). The performance of a topography-based decoder (center of mass, CoM) and a
maximum likelihood (ML) decoder was compared. (A) While the performance of the ML decoder decreased as retinal arbor
size increased, CoM performance was unaffected. The bluemenkhol mutant fish has wider retinal arbors and decreased
visual acuity compared to wild-type fish [81], and this is more consistent with ML than CoM decoding. (B) Performance of
the CoM decoder increased more slowly with stimulus separation compared to the ML decoder (deg, degrees). (C,D)
Multiunit activity was recorded in the visual cortex of awake ferrets over development while viewing natural (nat) and artificial
(art) stimuli (evoked activity, EA), or in the absence of visual cues (spontaneous activity, SA). The dissimilarity between
evoked and spontaneous activity decreased with age, but more so for natural than for artificial stimuli. However dissimilarity
did not decrease between evoked and spontaneous activity when temporal correlations in the latter were removed (surr,
surrogate data) (adapted, with permission, from [46]).
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ubiquitous in normal visual experience), they still developed oriented receptive fields, suggest-
ing that the development of such receptive fields is not dependent on experience [36]. Of note,
in these experiments spontaneous retinal waves were not blocked, and it was subsequently
shown using a sparse-coding model that only a small proportion of normal retinal wave activity –

relative to direct visual experience of spots only – was required for oriented rather than spot-like
receptive fields to develop [37].

Spontaneous activity also occurs in more central structures such as the cortex [38–40]. Input
from sensory receptors plays an important role in driving some of this activity, but some of it is
endogenously generated. For instance, when both eyes were removed during the first day of
zebrafish development, spontaneous activity still emerged over the next few days in the optic
tectum, sharing statistical similarities with tectal spontaneous activity in normal zebrafish
[41,42]. Spontaneous patterns in central structures have been suggested to play a role in
the encoding process, where stimuli recruit spontaneously generated patterns to represent
stimulus features [43]. Supporting this idea is the observation that the spatiotemporal correla-
tion structure in ferret primary visual cortex was only mildly modulated by sensory inputs [44],
and could predict the overall structure of visually-evoked orientation columns [83]. It has also
been suggested that spontaneous activity in the cortex acts as a self-correcting mechanism,
whereby the network modifies erroneous representations of input variables with additional
spiking, hence minimizing coding error [45].

Another key conceptual idea for the role of spontaneous activity is that it provides a represen-
tation of a Bayesian prior over stimuli P(s) (Box 1). Among the most direct supports for this idea
is the demonstration that the distance between the probability distributions for evoked and
spontaneous activity reduces over development in ferrets [46]. This suggests that the statistics
of spontaneous activity come to match those of activity evoked by P(s) (Figure 2C,D). Similarity
between evoked and spontaneous patterns of neural activity has also been observed in mice
and fish [43,47]. However, this match only occurs (at least in ferrets) for natural but not artificial
stimuli [46]. In humans, spontaneous activity preceding evoked responses accounted for a
large portion of both neuronal and behavioral variability [48], as well as influencing perception
[49], providing further evidence for a role for these patterns in the decoding process.

Receptive Field and Circuit Development
The emergence over development of structured receptive fields that encode information
beyond topography, such as orientation selectivity in the visual system, has been a key target
for theories of neural coding [12]. Sensory space is very high-dimensional (e.g., an image of size
1000 � 1000 pixels can be thought of as a point in a 1000 000-dimensional space). Important
goals are therefore to understand the underlying regularities of this space, how these can be
usefully represented in a population of neurons, and how these representations could be
learned during development. The obvious mechanism for implementing such plasticity is
through Hebbian learning.

Principal components analysis (PCA) performs dimension reduction by projecting points in
the high-d space into a low-d space, in a manner where the axes of the low-d space
correspond to the directions which preserve the most variance in the high-d space. Neurons
can find these principal components via simple Hebbian learning rules [50]. The first two
principal components of natural images are oriented edges; however, they are not localized in
space, unlike the oriented receptive fields seen in primary visual cortex. More successful in this
regard is independent components analysis (ICA), which finds statistically independent
(rather than only uncorrelated, as in PCA) dimensions of the input space [51]. In addition to
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accounting for aspects of sensory maps under normal conditions, ICA also captures changes
that occur in cortical receptive fields when visual input is disrupted, for instance through
monocular deprivation, stripe rearing, and strabismus [52]. However, the biological learning
rules that could find independent components are less clear, although several suggestions
have been made [53,54].

ICA is an example of sparse coding: each neuron is not active very often, but when it is active it is
highly active. The probability distribution of the activity of each neuron is therefore relatively sharply
peaked and has heavier tails than a Gaussian distribution. These properties can be quantified
using kurtosis (a measure related to the 4th moment of the distribution), and sparse coding as
described above corresponds to relatively high kurtosis measures. Sparse coding provides an
intermediate point between local codes, whereeachneuron uniquely representsonly onepossible
input, and dense codes, where a large proportion of neurons are active foreach input. Local codes
are easy to decode but have limited representational power: the number of neurons required
scales with the number of inputs. By contrast, dense codes are harder to decode, but the number
of neurons required scales only as the log of the number of inputs [55]. Multiple lines of evidence
support the idea that neural codes become sparser over development, suggesting that forming
sparse codes is a key goal of neural development [56–58]. However, what this means for
hierarchical representations is unclear. Clearly, the statistical structure of the stimuli an animal
receives is a function not only of the world but also the animal’s own behavior. An intriguing recent
proposal is that a developing organism might adapt its behavioral and neural coding strategies in a
coordinated manner to maximize coding efficiency – so-called active efficient coding [59]. This
strategy, using both computer simulation and implementation on a real robot, was shown to be
capable of learning smooth-pursuit eye movements [60].

In mammals there is a distinction between two phases of circuit development – an early,
experience-independent major establishment phase and a subsequent experience-dependent
phase of further intensive circuitry changes (e.g., [61]). In ferrets the first phase is characterized
by frequent retinal and cortical waves [38], the formation of rough topographic maps, and the
onset of a map-refinement process in parallel to changes in the proportions of inhibitory
neurons [62–64] (Figure 3A). At this stage orientation maps are recognizable, although homo-
geneity in columnar structure, signal strength, and mature orientation selectivity is not achieved
until 3 weeks after eye opening [36,65–67]. The onset of visual experience at around postnatal
day 30 coincides with a dramatic increase in the density of cortical synapses in all cortical
layers, and a comparable increase in the outgrowth of both short- and long-range axonal
projections [68]. A key substrate for forming sparse codes is likely the maturation of lateral
inhibitory connections. By mutually inhibiting the activity of neurons that would otherwise fire
together, such connections can reduce correlations in neural firing and thus reduce the
redundancy in the representation [69,70]. Because both excitatory and inhibitory circuits refine
after eye opening [71–73], and are susceptible to changes in visual experience [74–76], the
effectiveness of lateral inhibition likely changes during postnatal development. However, the
extent to which this may enhance the processing of visual cues is unknown.

The roles of neuronal selectivity, variance, and noise correlations in neural coding have recently
been investigated in the context of direction coding in the ferret visual cortex [58]. Over a brief
period of time following eye opening, the active population of neurons underwent a striking
transformation from a highly dense response with complex spatiotemporal wave-like dynamics
to a sparse distribution of active neurons [56–58]. This transformation was characterized by a
decline in response variance and pairwise noise correlations, occurring with the same time-
course and in the same neuronal population as the rise of direction selectivity. Longitudinal
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imaging in the same animals evaluated the contribution of each of these changes to the
increase in discriminability between directions (Figure 3B,C). A reduction in response variance
played a stronger role in improving discriminability than the increase in selectivity. High noise
correlations present at eye opening limited discriminability, and removal of noise correlations
(via data shuffling, hybrid datasets, or decreased noise correlation with visual experience)
resulted in improved discriminability. Furthermore, the selectivities and structure of noise
correlations were affected by visual experience, emphasizing the role of experience in shaping
the neural code.
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Figure 3. The Development of the Neural Code in the Ferret Visual Circuit. (A) Schematic representation of some
of the key processes related to neural coding occurring in the developing ferret visual system. The vertical grey bar
indicates the age for eye opening. Horizontal blue gradient bars indicate a trend over development (white/low, blue/high).
Pre-vision processes guide the establishment of the circuit [36,38,62–64]. Subsequent vision-guided processes
[68,74,82] refine key properties of neural code [46,58,66,67]. (B,C) Reduction of variance is crucial for improved direction
discrimination (redrawn, with permission, from [58]). Two-photon calcium imaging of visual cortex in response to moving
grating stimuli in eight different directions was performed on naive (postnatal days P29–32) and immature (P33–36) ferrets.
(B) Direction discriminability for single neurons increased from naive to immature animals (cum prob, cumulative prob-
ability). Combining naive levels of mean responses with immature levels of variance resulted in near-immature levels of
discriminability. By contrast, combining naive levels of variance (var) with immature levels of mean response gave only a
small improvement in discriminability over the naive case. This suggests that, over development, variance reduction plays a
more important role in the improvement of discriminability than increases in selectivity. (C) Direction discriminability for the
neural population increased from naive to immature animals. Combining naive direction selectivity with immature variance
and correlation (corr) structure resulted in near-immature levels of discriminability. This effect was smaller when only
immature correlation structure was used. This again suggests a crucial role for variance reduction over development in
improving discriminability.
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Concluding Remarks
Despite our increasing knowledge of the mathematical principles underlying neural coding, how
coding emerges over development remains an open question (see Outstanding Questions). In the
adult brain it has been suggested that different neuronal subpopulations may use different coding
strategies, and additionally that these strategies may vary over time [10]. During development,
neurons can change their information transmission capabilities, for instance by gain scaling [77].
Instead of thinking of development as simply elaborating and refining one specific coding strategy,
it could be more meaningful to consider how a repertoire of coding strategies, and the temporal
dynamics of the transitions between these, emerges in the face of the storm of anatomical and
physiological changes occurring in both the brain and body during development.

In addition to being of obvious relevance to understanding neurodevelopmental disorders [78],
deeper understanding of neural coding during development could also be important for the
construction of future computing technologies. Recent developments in artificial intelligence
(AI), although impressive (e.g., [79]), have typically occurred within a framework of fixed
hardware built by human engineers, rather than via hardware that needed to construct itself
while interacting productively with the world. In the same way as current AI algorithms such as
deep learning originally took inspiration from neuroscience [80], our evolving understanding of
neural development might ultimately lead to a new generation of breakthroughs in AI.
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time?
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How are the probability distributions
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tained and updated over
development?

How strongly is the development of
coding strategies influenced by sen-
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