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Neural development must construct neural circuits that can perform the computations nec-
essary for survival. However, many theoretical models of development do not explicitly
address the computational goals of the resulting networks, or computations that evolve in
time. Recurrent neural networks (RNNs) have recently come to prominence as both models
of neural circuit computation and building blocks of powerful artificial intelligence
systems. Here, we review progress in using RNNs for understanding how developmental
processes lead to effective computations, and how abnormal development disrupts these
computations.

Thedevelopment of a functioningnervous sys-
tem proceeds through multiple complex

stages, including neurulation, regional specifica-
tion, neurogenesis, cell fate determination, cell
migration, axonguidanceanddendritic develop-
ment, and synapse formation and pruning, fol-
lowed by ongoing plasticity and refinement.
Across different species, the timescales involved
in these processes range from hours to years. In-
teresting theoretical problems aboundat all these
stages (van Ooyen 2011; Goodhill 2018). For in-
stance, understanding how molecular and/or
mechanical cues promote tissue folding, regional
identity, and axon guidance, especially given the
presence of unavoidable noise in the measure-
ment of concentration (e.g., Gregor et al. 2007;
Bicknell et al. 2015; Tkacǐk et al. 2015). On the
other hand, research in the neural network com-

munity has focused mostly on the formation of
connections between neurons, and in particular
on how connection strengths are coded/learned
within a fixed architecture so that the network
performs specific computations.

Mathematical instantiations of Hebb’s rule
(Hebb 1949) have proven effective at reproduc-
ing receptive field structures found in early sen-
soryareas such as the visual system in response to
appropriate activity patterns (von der Malsburg
1973; Linsker 1986; Goodhill 1993), including
the effects of altered sensory input such as mon-
ocular deprivation (Miller et al. 1989). These ap-
proaches are unsupervised, and attempt to ad-
dress developmental processes fairly explicitly.
In contrast in supervised approaches, learning
takes place by giving the network a target output
for every input pattern and adjusting theweights
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in the network to achieve this outcome, usually
via backpropagation (Rumelhart et al. 1986). An
early example of the application of backpropaga-
tion to understand neural circuits was the repro-
duction of neural response properties in area 7a
of the posterior parietal cortex of monkeys
(Zipser and Andersen 1988). A more recent ex-
ample is Yamins et al. (2014), which matched
response properties through many layers of a
deep network with those in the primate visual
system. Supervised approaches show how learn-
ing a particular computational task can lead to
structure matching that found biologically, but
do not claim to reproduce actual developmental
processes.

Until recently supervised learning ap-
proaches to understanding neural computation
were primarily focused on layered, feedforward
networks, where inputs and outputs do not have
a time dimension (e.g., the examples above).
However, in the past few years, recurrent neural
networks (RNNs) have gained prominence
through their ability to accept time-varying in-
puts and produce time-varying outputs. Such

networks have proved very useful for under-
standing computations involving the accrual of
information over time, such as when animals are
trained to respond in specificways to cues occur-
ring at specific times.This opensupamuchmore
complex repertoire of task possibilities. While
the focus in this regard hasmost commonly been
on adult learning occurring on relatively rapid
timescales, the question naturally arises of
whether such networks can also be applied to
understand the emergence of network compu-
tations on developmental timescales. We argue
that this provides a promising direction for un-
derstandingbothnormalandabnormaldevelop-
ment, but that several important issues remain to
addressed.

RECURRENT NEURAL NETWORKS

Basic Neurobiological Components of RNNs

RNNs can be interpreted as firing rate models of
neural circuits (Fig. 1; Sussillo 2014). This ap-
proach allows RNNs to approximate the differ-
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Figure 1.Basic principles of recurrent neural networks (RNNs). (A) AnRNN transforms time-varying inputs~u(t)
into time-varying outputs~z(t) using firing rate–type dynamics. The neurons’ synaptic current~x(t) and firing rate
~r(t) represent the RNNs’ internal state that captures long-term relationships between inputs and outputs and τ
sets the timescale of individual neurons’ activity. Trainable parameters include the input Win, recurrent Wrec,
and outputWout weight matrices and the neurons’ biases~b. (B) Currents are transformed into firing rates by an
activation function (or F–I curve). Popular choices include nonsaturating functions like a rectified linear unit
(ReLu, left) or saturating functions like tanh (·) (right). The bias bi determines the amount of current required to
activate the neuron.
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ential equations of a typical firing rate model
(Dayan and Abbott 2005):

t
d~x
dt

¼ �~x þWrec~r þW in~u,

~r ¼ f (~x þ~b),

~y ¼ Wout~r,

(1)

where each entry i of the vector~x is the net, low-
pass filtered synaptic current of neuron i,~r are
corresponding instantaneous firing rates, and τ
describes the timescale of activity of individual
neurons. The feedforward firing rate input and
readout of the system are ~u and~y, respectively.
The activation function f(·) can be interpreted as
an F–I curve (Izhikevich 2006) that mediates the
relationship between injected current (I) and
neuronal firing rate (F). Trainable parameters in-
cludeWrec,Win, andWout, theweightmatricesthat
determine the efficacies of recurrent, input, and
readout connections, respectively, and~b, the neu-
rons’ biases that set their activation threshold
(analogous to rheobase). The resulting model is
typically used to process sequential data such
that the state of each neuron at time t is driven by
the inputdata at tandpreviousneural states.Thus,
RNNs have “memories” in which sustained activ-
ityrepresents informationfromprior inputdataby
connectionweights. This feature is key to learning
long-term dependencies in sequence data.

Following the McCulloch–Pitts model (Mc-
Culloch and Pitts 1943), f (·) is a threshold-like
activation function.Commonchoices for f (·) can
be roughly divided into two categories: sigmoid
functions that saturate as current increases (e.g.,
tanh (·); Fig. 1B, right) and those that donot (e.g.,
rectified linear units—ReLu; Fig. 1B, left). F–I
curves of both types can be found in vivo (Mc-
Cormick et al. 1985; Guan et al. 2014) and can
change during development (Oswald and Reyes
2008). The functional significance of the specific
activation function used remains poorly under-
stood, hence a common approach is to analyze
many RNNs with different activation functions
(e.g., Yang et al. 2019; Driscoll et al. 2022). Note
that this F–I curve classification differs from the
taxonomy of Hodgkin–Huxley models (Hodg-
kin and Huxley 1952) in which neural dynamics
are classified by the bifurcation at the activation

threshold (Rinzel and Ermentrout 1989; Izhike-
vich 2006).

Although synaptic connection weights are
primarily determined by training (discussed lat-
er), biological features can be imposed by con-
straining their values. For instance, an RNN can
be divided into distinct excitatory and inhibitory
subpopulations (Song et al. 2016). While a neu-
ron can bemade excitatory or inhibitory by sim-
ply giving all its outgoing connections the appro-
priate sign a priori, whenweights are determined
only by a training algorithm, neurons have out-
going connections of both signs. Recent work by
Song et al. (2016) bypasses this problem by de-
composingweightmatrices suchthatW=W+M,
where the connection strength is determined by
training the nonnegative matrix W+ and excit-
atory/inhibitory identity is fixed by a prior in the
diagonalmatrixM. This allows standard training
algorithms to optimize the network weights
while respecting the subpopulation identities.

Additional constraints can also be added
to RNN circuit models (Molano-Mazón et al.
2023). Advances in large-scale neural recordings
(Urai et al. 2022) have revealed that neurons dis-
tributed acrossmany brain regions act in concert
to produce behaviors and process sensory infor-
mation (e.g., Musall et al. 2019; Steinmetz et al.
2019; Stringer et al. 2019). Recent RNN models
applied to this spatial scale have incorporated
brain region organization by imposing a block
structure (Holland et al. 1983) on recurrent con-
nections in which intra-area connections are
dense and inter-area connections are sparse
(Pinto et al. 2019; Kleinman et al. 2020; Perich
and Rajan 2020). Furthermore, the input and
output connection weights (Win and Wout) can
be structured tomirrorbrain regionorganization
(Song et al. 2016). This allows distinct “sensory”
and “motor” areas where external “sensory” in-
put is routed to a subpopulation of neurons and
theoutgoing“motor” response is readexclusively
from a different subpopulation.

Once the architecture of an RNN circuit
model is determined, it canbe trained toperform
a specific task. This is often formulated as a su-
pervised learning problem in which the data set
consists of orderedpairsD ¼ {(~ui,~ylabeli )}Ni¼1 and
the RNN learns to produce a set of desired out-
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puts~ylabeli when driven by a corresponding input
~ui. Similar to feedforward networks, RNNs learn
byadjusting their weights and biases. This can be
formulated as an optimization problem:

u� ¼ arg min
u

L(D; u), (2)

where θ and θ� represent all trainable parameters
before and after training, respectively, typically
Wrec, Win, Wout, and~b, and L is a loss function
that measures the differences between the RNN’s
actual and desired outputs. Loss is calculated for
each item in the data set and parameters are ad-
justed to minimize the total loss. Despite their
topological differences, the algorithms used to
train both feedforward neural networks and
RNNsare similar.Mostnotably, backpropagation
can be implemented in RNNs as backpropaga-
tion-through-time by transforming the RNN
into a deep feedforward networkwhere each layer
represents a timestep (Werbos 1990).Many addi-
tional training approaches are available including
reinforcement learning (Song et al. 2017) and re-
cursive least squares (Sussillo and Abbott 2009),
andcarrydifferentassumptionsthatareamenable
to specific types of tasks and can heavily influence
the resulting neural dynamics (Mikhaeil et al.
2022).

Computations Mediated by RNNs

RNNs maintain an internal state that is ideal
for performing computations involving se-
quences, and so can be trained to perform tasks
with a temporal component (although seeWang
et al. 2021). In a neuroscience context, RNNs
have been used to study a wide variety of tasks,
but cognition andmotorcontrol havebeen apar-
ticular focus (Vyas et al. 2020; Yang and Wang
2020). Within the cognitive task framework,
RNNs have been trained to perform tasks that
have been investigated experimentally (e.g., us-
ing a randomdotmotion approach) such as per-
ceptual (Song et al. 2016) or context-dependent
decisionmaking (Mante et al. 2013) andworking
memory (Masse et al. 2019; Orhan andMa 2019;
Ghazizadeh and Ching 2021). The flexibility
demonstrated by the cognitive task paradigm

demonstrates the primary advantage of RNNs
as a neural circuit model: A single training pro-
tocol can typically be reused to train an RNN on
many tasks that would require a human to start
over afresh when manually constructing circuit
models.

RNNs’ applicability to motor control tasks
stems from a second, related advantage: RNNs
are capable of approximating any dynamical
system (Schäfer and Zimmermann 2006). For
instance, hypotheses about the relationship be-
tween neural activity andmotor control (Shenoy
et al. 2013) have been explored by training RNNs
toproduce output signals thatmatch experimen-
tal recordings of muscle actions and then com-
paring with corresponding neural recordings
from the motor cortex (Hennequin et al. 2014;
Sussillo et al. 2015; Saxena et al. 2022). Related
brain–computer interface studies have demon-
strated that RNNs can effectively and rapidly de-
codemotorcommands fromneural activity (Sus-
sillo et al. 2012; Saxena et al. 2022).

MODELING NEURAL CIRCUIT
DEVELOPMENTWITH RNNS

Structurally Dynamic RNNs

In addition to the synaptic efficacy fine-tuning
typical of adult learning, neurodevelopmental
processes also includemuchbroader-scale struc-
tural changes driven by neurogenesis, synapto-
genesis, and pruning. RNN circuit models
typically do not make this structure/efficacy dis-
tinction and implicitly assume that constituent
neurons have all-to-all structural connections
whose efficacy is tuned to perform specific com-
putations. However, RNNs with structurally dy-
namic learning rules have granted insight into
the functional significance of specific neurode-
velopmental mechanisms, as we describe below
(Fig. 2A–C).

Neurogenesis

The recurrent cascade correlation network
(Fahlman 1990) was the first RNN to learn via
neurogenesis. The network learns mappings be-
tween input and output sequences by iterating
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over trainingdata, each timereducinga loss func-
tion by adding an additional neuron with a re-
current self-connection and feedforward con-
nections from existing neurons. This approach
yields an RNN with the minimum number of
neurons required to perform a computation
when constructed using the specified rule. How-
ever, the resulting architecture is restricted to a
small region of the possible search space and so
has a limited capacity to learn.

A subsequent approach termed GNARL
(generalized acquisition of recurrent links) used
both neurogenesis and pruning to construct
RNNs nonmonotonically with minimal restric-
tionstobothRNNsizeandarchitecture (Angeline

et al. 1994). This allowed the RNN to explore a
much larger region of the parameter space by up-
dating both its topology and its edgeweights dur-
ing learning.However,GNARLisanevolutionary
algorithm in which populations of RNNs are ini-
tialized, ranked according to their ability to per-
form a computation (fitness), and then used to
construct the next RNN generation according
to this ranking, limiting its relevance to neural
development.

A more recent approach used neurogenesis
and pruning to implement lifelong learning (i.e.,
learning from a continuous stream of informa-
tion) (Parisi et al. 2018). In neural networks, the
primary obstacle to lifelong learning is cata-
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Figure 2.Recurrent neural network (RNN)models of neural development. (A) Some RNNmodels have incorpo-
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Learning can result both from traversing existing parameter space (e.g., the plane formed by synaptic weights w1
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in different solutions (Molano-Mazón et al. 2023).
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strophic forgetting. The authors created a two-
RNN circuit model based on complementary
learning systems theory (McClelland et al.
1995) in which the hippocampus mediates epi-
sodic memories that are consolidated into se-
mantic memories in the neocortex. Both RNNs
learn via a grow-when-required algorithm
(Marsland et al. 2002; Parisi et al. 2017) such
that newneurons are created byaHebbian learn-
ingruleonlywhennecessary, andremoved if they
are no longer used. This allows the network to
avoid catastrophic forgetting while adapting to
nonstationary inputs. Together these RNN ap-
proaches illuminate the computational potential
of apoptosis and synaptic pruning and their syn-
ergy with neural growth.

Synaptogenesis and Pruning

Neural development in many organisms includ-
ingmammals can be characterized by initial rap-
id synaptic growth followed by a period of syn-
aptic pruning that eventual plateaus at a more
stable value (Huttenlocher 1979;MarkusandPe-
tit 1987; Bourgeois and Rakic 1993; White et al.
1997). Both activity-independent processes reli-
antongenetic,mechanical, andmolecularmech-
anisms, and activity-dependent processes reliant
on learning, sensory experiences, and spontane-
ous activity, are thought to play a role (Faust et al.
2021). Graph–theoretic analyses of neural devel-
opment have indicated that overproduction-
then-pruning algorithms can simultaneously
enhance circuit robustness and efficiency, key
measures of global network structure (Navlakha
etal. 2018).However, theprecisecontributionsof
activity-dependent and independent processes
to synaptic architecture development and their
computational significance remain unclear.

Recent studies using RNNs have uncovered
potential relationships between activity-depen-
dent synaptogenesis and pruning and memory
formation (Johnsonet al. 2010;Millán et al. 2018,
2019, 2021). This approach modifies Hopfield
networks, a classic RNN model capable of asso-
ciative learning(Hopfield1982), to learnviapref-
erential attachment and detachment. More spe-
cifically, the RNN implements a stochastic,
activity-dependent learning rule in which neu-

rons gain and lose edges according to empirically
derived probability distributions defined by the
current each neuron receives and the number of
synaptic connections in the RNN. The resulting
RNNs exhibit synaptic overproduction-then-
pruning that matches human and mouse data.
Analysis revealed that strong coupling between
activity and structure is necessary for memory
formation, synaptic pruning canoptimizeneural
circuits using local plasticity rules, and that an
initial period of dense synaptic connectivity can
enhance memory stability. Together, this ap-
proach synthesizes methods from machine
learning, network science, and statistical physics
to reveal how feedback between the dynamics
of circuit structure and activity may interact
throughout development to enhance computa-
tional performance.

Development of Circuit Function

Computational and behavioral requirements
change over development. As a result, under-
standing the development of computational
function is critical to understanding neural de-
velopment. Complementary to the mechanism-
first approachesdescribedabove,neuraldevelop-
ment can be investigated in a computation-first
manner, where RNNs are trained to match the
development of circuit function and then ana-
lyzed to reveal possible neurodevelopmental
mechanisms. This approach leverages advances
in machine learning to explore the functional
principles of neural circuit development and
produce hypotheses about the underlying
mechanisms.

Development of Cognitive Function

Cognitive abilities improve during neural devel-
opment. For example, monkeys exhibit an im-
provement in working memory tasks from ado-
lescence to adulthood, that is accompanied by an
increase in activity in prefrontal cortex neurons
during the task’sdelayperiod (Zhouet al. 2016a).
However, specific, causal relationships between
neurobiological changes and cognitive improve-
ment remain difficult to uncover. RNNs can be
used to investigate this relationship by first rep-
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licating specific computations across a develop-
mental trajectory and then dissecting the under-
lying neural dynamics.

Recent work has taken this approach to link
experimentallyobserved changes inneural activ-
ity to improvement in specific cognitive func-
tions throughout development (Liu et al. 2021).
The authors trained RNNs to match the perfor-
mance of adolescent and adult monkeys (35%–
65% and >65% correct trials, respectively) on
working memory and response inhibition task
variants (Zhou et al. 2013, 2016b). At each stage
of development artificial and prefrontal cortex
neural activity were compared to explore the ex-
tent towhichcomputationaloptimization, rather
than specific (possibly unrelated) biological pro-
cesses, can explain changes in neural dynamics
resulting from development. Intriguingly, RNN
activity dynamics in both working memory and
response inhibition tasks mirrored specific
changes observed in prefrontal cortex neural ac-
tivity and hypothesized to drive task improve-
ment. Although not a full, causal explanation,
this approach implicates the computational
function of specific neurodevelopmental
changes and demonstrates the utility of top-
downRNNapproaches tomodelingneural circuit
development. RNNs’ flexibility allows this ap-
proach toserveasapromisingtemplate forexplor-
ing the computational relevance of other neuro-
developmental changes across model systems.

Modeling Considerations

Three key factors require special consideration
when using RNN circuit models to investigate
neural development. First, changes observed in
circuit structure and activity during learning are
not necessarily related to the task (Hennig et al.
2021).Even inanondevelopmental context,neu-
ral representations in adult animals performing
familiar tasks arewell known to “drift” over time
(Driscoll et al. 2017) due to many separate bio-
logical processes. The variety and scale of biolog-
ical and cognitive changes present in neural de-
velopmentmayobscure the relationshipbetween
RNN and neural circuit learning. Second, cata-
strophic forgetting (Ratcliff 1990; Kudithipudi
et al. 2022) is a particular problem for modeling

neural development since this involves learning a
large amount of information over much longer
time periods relative to learning problems con-
sidered in most RNN applications.

Third, neural circuits develop to concurrently
performawidevarietyof tasks.Recentadvances in
multitask machine learning (Zhang and Yang
2018) enable individual RNN circuit models to
learn many tasks (Yang et al. 2019). Understand-
ing the distinctions between how tasks are repre-
sented within RNNs in these settings is an active
area of research (Sucholutsky et al. 2023). Studies
exploring the resulting neural circuits (in a non-
developmental context) have observed composi-
tionality in task variable representations: RNNs
tend to develop functionally specialized subcir-
cuits to execute computations that are reused
when performing many tasks (Yang et al. 2019;
Driscoll et al. 2022). However, not all task sets
require this functional specialization, andmay in-
stead produce computations that are executed by
the collective dynamics of all neurons (Dubreuil
et al. 2022). Together, these studies indicate that
“more is different” (Anderson 1972) and interac-
tions between tasks within a task set may have a
substantial impact on the computational mecha-
nisms learned by RNNs. As a result, improving a
task set’s approximation of behavioral and com-
putational requirements during development
couldbe critical to constructing richand informa-
tive theories about the underlyingmechanisms of
circuit development.

Learning at Multiple Timescales

Metalearning

Neural development involves learning at dispa-
rate timescales. For example, a specific task T
(e.g., a single stimulus-reward association) can
be learned on a shorter timescale, but recogniz-
ing commonalities in a sequence of tasks {T1,
T2, T3, …} may require learning over a much
longer timescale. However, learning at different
timescales is not an independent process. Rath-
er, learning at longer timescales often benefits
from ongoing increases in efficiency, indicat-
ing the presence of learning-to-learn (Harlow
1949).
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Metalearning (Hospedales et al. 2021), offers
a flexible framework to couple learning across
different timescales by learning-to-learn (Fig.
2D). Conventional learning algorithms make
specific assumptions about how to learn, includ-
ing hyperparameter values of the learning algo-
rithmor initial values of themodel’s parameters.
The metalearning paradigm seeks to improve
these assumptions. Formally, metalearning can
be viewed as a nested optimization problem:

u� ¼ arg min
u

L(D; u,v), (3)

v� ¼ arg min
v

Lmeta(D; u�(v),v): (4)

The inner optimization problem (Equation
3) constitutes conventional supervised learning
and ω represents an assumption of the learning
algorithm (e.g., a specific hyperparameter). The
outer, metalearning problem (Equation 4) seeks
to optimize ω given θ�, the parameters resulting
from Equation 3, using its own learning algo-
rithm and loss function Lmeta (Hospedales et al.
2021;Wang 2021). Within this paradigm, learn-
ingat the fast (inner) timescale shapes learning at
the slow (outer), developmentally relevant time-
scale, and vice versa.

Metalearning in RNNs

RNNmetalearning studies can be categorized by
their metarepresentations. Mirroring advances
in machine learning (Finn et al. 2017), metal-
earning the RNNweight initialization has yield-
ed insight into the computational process un-
derlying learning over the disparate timescales
relevant to neural development (Goudar et al.
2023; Molano-Mazón et al. 2023). Within this
framework, RNNs are pretrained on a set of tasks
{T1, T2, …, Tn} and then the RNN’s ability to
generalize to novel tasks {Tn+1, Tn+2, Tn+3, …}
is assessed. The specific parameter configuration
induced by pretraining corresponds to “struc-
tural priors,” embodying preexisting knowledge
learned over the course of development or pos-
sibly longer, evolutionary timescales (Zador
2019; Koulakov et al. 2022; Barabási et al.
2023). Recent analysis has demonstrated that

RNNswithstructuralpriors inducedbypretrain-
ing on naturalistic tasks match suboptimal be-
haviorexhibitedbyrats inatwoalternative forced
choice task (Molano-Mazón et al. 2023). In con-
trast, RNNs trained only on the two alternative
force choice tasks exceeded the rats’ perfor-
mance. This indicates the importance of incor-
porating learning across different timescales in
producing biologically relevant RNN models,
but does not differentiate between development
and evolution. From a neural manifold perspec-
tive, metalearning weight initializations have
been shown to enable rapid generalization to
new problems through the construction schema
(Goudar et al. 2023), neural representations that
abstract commonalities across previous experi-
ence and play a key role in developmental psy-
chology (Piaget 2005). This metalearned solu-
tion minimizes the weight changes necessary to
learn additional tasks, thus linking learning ac-
celerationtopossiblewiringconstraints resulting
from the biophysical mechanisms of neural
development.

From both a neurobiological (Doya 2002)
and machine learning perspective (Li et al.
2017), the learning algorithm’s hyperparameters
(e.g., the learning rate) are a natural metarepre-
sentation choice. Neuromodulators have been
shown to selectively regulate learning across a
wide variety of circumstances (Marder 2011).
Workon the neural basis of reward-driven learn-
ing has linked neuromodulators to specific pa-
rameters and hyperparameters in reinforcement
and metareinforcement learning algorithms
(Schultz et al. 1997; Doya 2002). More recently,
neuromodulationhasbeenexplicitly incorporat-
ed into RNN circuit models as an additional
mechanism of experience-dependent plasticity
that modulates neural activity throughout tasks
(Wang et al. 2018; Jiang and Litwin-Kumar
2021). In this approach, RNNweights are trained
via gradient descent to produce computations
that track a changing environment using neu-
romodulation mechanisms. Consequently, the
standard roles of synaptic weights as parameters
and neuromodulators as hyperparameters are
effectively transposed. RNNweights act as hyper-
parameters that aremetalearned on a long, neural
development-relevant timescale, while neuro-
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modulation mechanisms implement parameters
that learn by integrating reward information on
a short, behaviorally relevant timescale.

RNNMODELSOF NEURODEVELOPMENTAL
DISORDERS

A great variety of mental health conditions
are neurodevelopmental in origin. Examples in-
clude schizophrenia, autism spectrum disorder
(ASD), and attention-deficit/hyperactivity dis-
order.These causedeficits spanning awide range
of domains, including social, emotional, com-
municative, intellectual, and sensory functions
(Morris-Rosendahl andCrocq 2020).Numerous
studies investigating underlying mechanisms
have revealed changes at the genetic, neuronal,
and circuit levels (Sahin andSur 2015).However,
precise, causal relationships between observed
pathologies and disruptions to circuit function
remain poorly understood (Mizusaki and
O’Donnell 2021; Hitchcock et al. 2022). By
more accurately accounting for development in
RNN paradigms, we gain the ability to make in-
ferences about diseases in which specific mech-
anisms are known (Fig. 3).

Computational models of circuit dysfunc-
tion have spanned a range of levels, including
networks of Hodgkin–Huxley neurons (O’Don-
nell et al. 2017; Onasch and Gjorgjieva 2020),
leaky integrate-and-fire neurons (Cano-Colino
and Compte 2012; Cavanagh et al. 2020; Lam
et al. 2022), and population firing rate models
(Murray et al. 2017). These generally follow a
three-step process (Fig. 3A). First, the circuit
model’s parameters are tuned to fit a healthy
state. Second, specific parameters are altered to
match abnormalities found in a neurodevelop-
mental disorder. Third, the resulting computa-
tional deficits are compared to the symptoms of
the disorder. In principle, this approach could be
applied to any neurodevelopmental disorder (or
psychiatric disordersmore generally) but studies
so far have focused primarily onASD (Sahin and
Sur 2015) and schizophrenia (Owen et al. 2011).
Parameter alterations used to induce a disease
state can be grouped into three broad categories
(Lanillos et al. 2020): disconnection, where the
network has an atypical decrease or increase in

connections (Stevens 1992; Friston and Frith
1995), E/I imbalance,where the relative amounts
of excitation and inhibition are abnormal (Ru-
benstein and Merzenich 2003), and hypopriors,
inwhich circuits exhibit an abnormal reliance on
sensory informationrelative to top-downpredic-
tions based on prior experiences (Pellicano and
Burr 2012).

The advantagesofRNNsas amodel ofneural
circuit function described earlier also make
RNNs suitable to investigate circuit dysfunction.
The heterogeneous symptoms of neurodevelop-
mental disorders require a flexible modeling
framework capable of diverse computations,
and the ability of RNNs to learnmany computa-
tionsusing the same trainingprocess, oftenwith-
in the same RNN (Yang et al. 2019), is well
aligned to this goal. Similarly, the loss function
of RNNs allows the exact quantification of com-
putational errors across tasks. As a result, RNNs
are equipped with a natural method to measure
computational deficits induced by a parameter
perturbation. Additionally, RNNs are universal
approximators (Schäfer and Zimmermann
2006), often producing rich neural dynamics
that can be analyzed to provide mechanistic ex-
planations of computational deficits.

Schizophrenia

The earliest use of RNNs to investigate neuro-
developmental disorders applied Hopfield net-
works to explain how symptoms of schizophre-
nia might arise during memory formation
(Hoffman 1987). The memory capacity of Hop-
field networks is∼15%of the numberof neurons
(Hopfield 1982). Rather than applying a param-
eter alteration corresponding to a proposed cir-
cuit mechanism of schizophrenia, Hoffman
(1987) induced a disease state in the network
by overloading the number of stored memories.
Surprisingly, the resulting errors were qualita-
tively different from those observed below the
overloading threshold and were interpretable
in the context of schizophrenia. In the subthres-
hold regime, memories were either recalled cor-
rectly or resulted in a “generalization” error in
which the final state stabilized near a cluster of
similar memories. In contrast, the overloaded
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state produced two types of pathological errors:
misperceptions, inwhich the network exactly re-
called an incorrect memory, and more severe
dysfunction—similar to delusions or hallucina-
tions—in which many inputs recalled the same,
nonmemory state. The insights into schizophre-
nia provided by this study were limited by the
direction of its inference: observing a dysfunc-
tional state in an RNN and then mapping it
onto a psychiatric disorder without an underly-
ing biological mechanism. Despite this limita-
tion, its findings demonstrated the applicability

of RNNs to psychiatric disorders (Lanillos et al.
2020).

Subsequent studies examined theabilityof ex-
cessive synapticpruning toaccount for symptoms
of schizophrenia. Hoffman and Dobscha (1989)
trained Hopfield networks to recall a set of mem-
oriesandthenremovedconnections fromweakest
to strongest while tracking recall performance us-
ing the same error classes described above. Sur-
prisingly, they found that synaptic pruning
induced “delusions” and “hallucinations” as de-
scribed above, although not until ∼80% of syn-
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Figure 3. Recurrent neural network (RNN) modeling of neurodevelopmental disorders. (A) The train, perturb,
analyze approach to RNNmodels of neurodevelopmental disorders. First, the RNN’s parameters (θ1 and θ2) are
trained (green line) such that a loss function isminimized and theRNNis in a “healthy” state (greendot). Then the
parameters are perturbed (purple and blue lines) away from the optimal configuration to “disease” states. These
perturbationsmaybe systematic and easily interpretable, suchasE/I imbalances inmodels of autism (e.g., weaking
inhibitory connections, blue; Echeveste et al. 2022) or more abstract such as memory overloading in models of
schizophrenia (purple; Hoffman 1987). The resulting computational changes can be analyzed to link circuit
structure to computational deficits. For example, in a two alternative forced choice task, perturbations will result
in lower performance (lowerareas under the purple andblue distributions) butmayalso induce specific changes to
how computations are performed (e.g., increasing the mean reaction time, i.e., translation of reaction time distri-
butions to the right). (B) Themetalearning perturbation approach to RNNmodels of neurodevelopmental disor-
ders. Changes (ωx, purple, andωy, blue) to themetalearnedhealthy state (ωz, green)may result in distinct solutions
to the learning problem (Philippsen and Nagai 2018). These solutions may have similar task performance (areas
under the green, blue, and purple distributions are comparable) but perform computations in radically different
ways (blue and gold distributions have different means and higher-order moments).
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apses were removed. This demonstrated the
feasibility of a biologically motivated alteration
to an RNN as a model for a psychiatric disorder.
Furthermore, it is aligned with significant, exper-
imental observed pruning during healthy devel-
opment (Huttenlocher1979).However, themod-
el predicts that delusions and hallucinations
in schizophrenia are accompanied by memory
loss, which is at odds with clinically observed
symptoms.

A second series of RNN schizophreniamod-
els addressed this mechanism/symptom incon-
sistency byanalyzing an alternative theorydue to
Stevens (1992) in which recurrent connectivity
strength in the hippocampus overcompensates
for degraded external inputs (Horn and Ruppin
1995; Ruppin et al. 1996). The authors used a
morebiologicallymotivatedHopfieldmodelvar-
iant (Tsodyks 1988; Tsodyks and Feigel’man
1988) with directed connections and a more re-
alistic level ofneural activity.Meanfield theoretic
analysis and simulations revealed the functional
consequences of bothproposedbiologicalmech-
anisms. Weakening the model’s external input
impaired memory function and strengthening
recurrent connections restored memory func-
tion at the cost of inducing hallucination-like
memory retrieval errors. Combined, these mod-
elsof schizophreniahighlight theabilityofRNNs
to parse redundant circuit mechanisms in psy-
chiatric disorders (Mizusaki and O’Donnell
2021).

Autism Spectrum Disorder

The proportion of excitation and inhibitionneu-
rons receive is critical to sensory processing
(Anderson et al. 2000; Wehr and Zador 2003)
and is a fundamental description of the activity
in neuronal networks (van Vreeswijk and Som-
polinsky1996;AhmadianandMiller 2021). Sim-
ilarly, an imbalance in E/I signaling is a promi-
nent hypothesis for the mechanism underlying
ASDs (Rubenstein and Merzenich 2003). How-
ever, the extent to which E/I imbalances can ex-
plain the symptoms of autism is not well under-
stood(O’Donnell et al. 2017;Antoineet al. 2019).

A recent ASD study (Echeveste et al. 2022)
used RNNs to provide a mechanistic link be-

tween the E/I imbalance theory of circuit dys-
function and the hypopriors theory of ASD, a
variation of the Bayesian framework for percep-
tion (Pellicano and Burr 2012). The hypopriors
theory of ASD proposes that higher uncertainty
in prior distributions results in an overreliance
on sensory information. To explore the neural
basis of hypopriors, Echeveste et al. (2022) built
on previous work that trained an excitatory–in-
hibitory RNN circuit model to implement Baye-
sian perceptual inference such that optimal esti-
matesof the environmental statewereencoded in
the activity of the excitatory neurons (Echeveste
et al. 2020). E/I imbalances were then induced in
the trained model by weakening inhibitory con-
nections, and the effect on perception was mea-
sured from the resulting posterior distributions.
Critically, the E/I imbalances induced an over-
reliance on sensory information, as predicted
by the hypopriors theory of ASD. This result
represents one of the clearest links between cir-
cuit dysfunction and computational deficits
and highlights the potential of RNNs to reveal
and clarify the neural basis of developmental
disorders.

Using the language of metalearning, the
train-alter-compare approach induces a disease
state by shifting the RNN out of an optimal,
learned state (i.e., changing θ in Equation 3). Al-
ternatively, differences in cognitive processes ob-
served in neurodevelopmental disorders could
be a distinct, locally optimal state resulting
from changes throughout development. As a re-
sult, neurodevelopmental disorders could be
more appropriately modeled by shifting the
RNN out of a metalearned state (i.e., changing
ω� in Equation 4; Fig. 3B). Philippsen and Nagai
(2018) took the latter approach, training anRNN
to perform time series forecasting by estimating
the mean and variance of an input signal. The
authors separately altered two learning hyper-
parameters, external contribution and aberrant
precision, andmeasured the resultingdifferences
in task performance and internal task variable
representation after a fixed number of training
steps. The external contribution determined
the amount of sensory information used when
building its internal representation of the time
series, and the aberrant precision determined
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the RNNs’ estimate of the signal variance.While
most parameters allowed the RNN to learn the
task, the degree of structure in the internal task
variable representations varied independently of
task performance. This highlights that differ-
ences in cognitive processes may not align with
decreases in task performance. As a result, inves-
tigation of specific behaviors alone may not be
sufficient for understanding the mechanisms
and cognitive processes underlying autism and
other neurodevelopmental disorders. Similarly,
limits inherent to train–alter–compare studies
may be addressed by metalearning models of
neurodevelopmental disorders.

CONCLUSIONS

Theories of neural development require a frame-
work capable of extensive changes to circuit
structure and function spread across multiple
timescales. RNNs can fit all these criteria and
have already yielded crucial insight into the
codevelopment of neural circuit structure, dy-
namics, and computation. Incorporation of
metalearning, often paired with reinforcement
learning, as an explicit model of multiple devel-
opmental timescales, represents a promising
method for gaining insight into both normal
(Wang et al. 2018; Jiang and Litwin-Kumar
2021; Goudar et al. 2023) and abnormal devel-
opment (Philippsen and Nagai 2018). In addi-
tion, the implementationof structurallydynamic
learning rules has yielded insight into the com-
putational significance of neurodevelopmental
mechanisms.

How can RNN models of neural develop-
ment work synergistically with RNN circuit
models more broadly? Major challenges in un-
derstanding neural development and neurode-
velopmental disorders parallel challenges in
RNN analysis of mature circuits. Although
RNNs are often used to hypothesize the relation-
ship between circuit structure and function (Sus-
sillo 2014), alternative, mechanistically distinct
RNN hypotheses often yield nearly identical so-
lutions to the same problem (Vyas et al. 2020;
O’Shea et al. 2022). Similarly, redundancy in
neural circuit function (Fig. 3B) represents a
major challenge in understanding the neural ba-

sis of neurodevelopmental disorders (Mizusaki
and O’Donnell 2021). Because these are two
sides of the same coin, techniques that identify
the mechanisms of neurodevelopmental disor-
ders could be used to guide analysis that differ-
entiates theRNNhypothesis. Recent advances in
multitask learning in RNNs (Yang et al. 2019)
offer a potential solution to this problem. By
training the same RNN to perform many com-
putations, the functional consequences of circuit
differences—regardless of origin—can be com-
pared across tasks.

In summary, the ability of RNNs to flexibly
perform complex computations using the basic
components of neural circuits makes them an
appealing model for understanding not just the
brain in general, but also the emergence of net-
work computations on developmental time-
scales.
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