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The limits of chemosensation vary across
dimensions
Brendan A. Bicknell1,2, Peter Dayan3 & Geoffrey J. Goodhill1,2

Many biological processes rely on the ability of cells to measure local ligand concentration.

However, such measurements are constrained by noise arising from diffusion and the

stochastic nature of receptor–ligand interactions. It is thus critical to understand how

accurately, in principle, concentration measurements can be made. Previous theoretical work

has mostly investigated this in 3D under the simplifying assumption of an unbounded domain

of diffusion, but many biological problems involve 2D concentration measurement in bounded

domains, for which diffusion behaves quite differently. Here we present a theory of the

precision of chemosensation that covers bounded domains of any dimensionality. We find

that the quality of chemosensation in lower dimensions is controlled by domain size,

suggesting a general principle applicable to many biological systems. Applying the theory to

biological problems in 2D shows that diffusion-limited signalling is an efficient mechanism on

time scales consistent with behaviour.
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T
he ability of cells to sense their local chemical environment
is fundamental to many biological processes. Chemosensa-
tion is impressively precise with, for instance, the flagellar

motor in Escherichia coli reacting to changes in receptor
occupancy of less than 1% (ref. 1), and Dictyostelium discoideum
cells being capable of detecting gradients across the cell body
corresponding to differences of only a few bound receptors2.
Similarly, neuronal growth cones are exquisitely sensitive to soluble
and membrane-bound guidance cues3,4 and lymphocytes are
capable of accurate immunosurveilance by juxtacrine signalling5.
However, at these limits of precision, biophysical considerations
imply that there are significant differences in chemosensation as a
function of dimension; this is important as biological sensing
problems span one dimension (1D; for example, gene tran-
scription6); two dimensions (2D; for example, membrane-bound
reactions7; and receptor clustering8) and three dimensions (3D; for
example, bacterial and eukaryotic chemotaxis9,10).

The quality of chemosensation is inherently limited by two
different sources of variability: ‘reaction’ noise associated with the
stochastic nature of receptor binding, and ‘diffusion’ noise arising
from the motion of the ligands (here we do not consider noise
from downstream signalling). In the biologically relevant regime,
ligands diffuse slowly on the time scale of receptor activity. This
implies that molecules that unbind from a cluster of receptors can
rebind, producing temporal correlations in the statistics of
receptor activation11. The nature of this noise is determined by
the physics of diffusion, and so depends critically on both the
dimension and spatial extent of the domain of diffusion (Fig. 1).

Berg and Purcell11 first derived a limit to concentration
measurement in 3D using clever heuristic reasoning. Bialek and
Setayeshgar provided a more rigorous answer which included the
effects of reaction noise12, based on the fluctuation dissipation
theorem (FDT)13 from statistical physics. Remarkably, to within a
geometric factor, their result recovered the noise floor set
by the ‘perfect instrument’ considered by Berg and Purcell.
Subsequent work extended these ideas to incorporate cooperative
binding, gradient sensing and effects such as receptor diffusion
and endocytosis14–17. Alternate probabilistic approaches18,19

corroborate the principal result of ref. 12, albeit including an
extra factor in the limit of small numbers of receptors. However,
although the 2D problem was touched on in early work11,20–22

and related subproblems appear in refs 17,23–25, fuller extensions
of these insights from 3D to other dimensions are lacking.

One example concerns two-stage capture models, which are
based on the difference in diffusion as a function of dimension.

Here the diffusing molecule first adsorbs to and diffuses on a
lower dimensional surface before binding to a receptor. Since
diffusion is a better search strategy in lower dimensions, this
should decrease the mean time for the molecule to be captured
and counted20. Paradoxically though, this coupling of 1D and 3D
diffusion in gene transcription was found to be of little benefit to
sensing due to a noise cost from increased temporal correlations
in 1D26. Another example is a 2D result derived concurrently
with our work. This explored the possibility that long time
correlations may be avoided if ligands underwent endocytosis27.
These authors made the claim that measurements of several hours
may be required for accurate sensing in 2D.

These and other past studies have generally assumed an
unbounded domain of diffusion, whereas the spatial extent of the
intracellular space or membrane may in reality be limited.
Additional length scales emerge in calculations of mean
time to capture and diffusion-limited reaction rates in low
dimensions11,20,28,29, although how this will affect temporal
correlations from rebinding is unclear. This leaves open the
question as to which principles will extend to a wide range of
problems that occur in biological systems, such as a lymphocyte
measuring the concentration of protein on the bounded 2D
surface of a single cell.

Here we generalize the theory of ref. 12, using the FDT to
investigate for the first time the physical limits to chemosensation
in bounded domains of arbitrary dimensionality. We observe that
the spatial information is encoded by the eigenfunctions of the
Laplacian, explicitly revealing the dependence on the size of the
domain in 1D, 2D and 3D. We derive general results for 2D
sensing and demonstrate that there are two regimes of
measurement time in low-dimensional systems. We verify our
theoretical results numerically using particle simulations of
Brownian dynamics in 1D and 2D, for single and multiple
receptor systems. We show how the paradox due to 1D diffusion
posed by ref. 26 can be resolved, and apply our 2D findings to the
problems of cell recognition by natural killer cells in the immune
system and axon guidance in retinotectal map formation. This
demonstrates that under biological parameters diffusion-limited
signalling can be an efficient mechanism for sensing in low
dimensions.

Results
Derivation of theoretical results. We consider a cell attempting
to measure the concentration c of a diffusible ligand by employing
an array of M receptors. We assume that the average number of
ligand molecules in the vicinity of the array is in excess of the
number of receptors. Receptor states are denoted by binary
variables nm(t), equal to 1 when the receptor is bound and 0 when
unbound. Individual receptors bind and unbind ligand with rate
constants kþ and k� , respectively, so the equilibrium probability
that an individual receptor is bound is given by �n ¼ �c=ð�cþKDÞ,
where KD¼ k� /kþ is the dissociation constant. The estimate of
concentration is assumed to be based on an average of the total
occupancy NðtÞ ¼

PM
m¼1 nmðtÞ over time T

NT ¼
1
T

Z T

0
NðtÞ dt: ð1Þ

For long averaging times, the variance of NT is given by
hdNT

2i¼ 2tNhdN2i/T where dN2h i ¼ M�n 1� �nð Þ is the variance of
N at equilibrium and tN is the correlation time defined by

tN ¼
1

dN2h i

Z 1
0

dN 0ð ÞdN tð Þh i dt ¼ SN 0ð Þ
2 dN2h i : ð2Þ

SN(o) denotes the power spectrum of equilibrium fluctuations in
occupancy dNðtÞ ¼ NðtÞ�M�n, which by the Wiener–Khinchin

Figure 1 | Noise due to diffusion is influenced by dimension and domain

size. Representative trajectories (blue lines) of a molecule diffusing by

Brownian motion about a single receptor (red circles) in bounded 2D and 3D

domains. In 1D and 2D, return to the receptor is inevitable even in an

unbounded domain, while in 3D the molecule quickly becomes lost in the

bulk. The implication of these different regimes is that the ability of a cell to

average over independent measurements is degraded in lower dimensions.

Although intuitively it seems that the imposition of a boundary would amplify

these effects, we find instead that for long averaging times the quality of

chemosensation is improved. This is because the presence of a boundary

reduces the relative contribution of recurrence to low frequency noise.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8468

2 NATURE COMMUNICATIONS | 6:7468 | DOI: 10.1038/ncomms8468 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


theorem is the Fourier transform of the autocorrelation function.
By inverting the expression relating �n to �c, an estimate of
the concentration can be formed as c(NT)¼KDNT/(M�NT).
To first order, the noise in the measurement NT will propagate
through to this estimate via the gain dc

dNT
, giving rise to a

fractional error

dcrms

�c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tN

dN2h iT

s
: ð3Þ

Equation (3) is valid as long as TctN. We seek to determine tN

as a function of the parameters of the model and the dimension
and spatial extent of the domain of diffusion.

We use a mean field approach based on the framework of
ref. 12, the accuracy of which increases with the number of
receptors in the array. Using the FDT, we determine the power
spectrum by finding the linear response of the occupancy to small
perturbations in the free energy of binding F, expressed in the
frequency domain by the susceptibility cdNðoÞ=cdFðoÞ. This gives

SN oð Þ ¼ 2kBT
o

Im
cdN oð ÞcdF oð Þ

" #
; ð4Þ

where kBT is the thermal energy.
We distribute the receptors uniformly at radius b from the

origin, up to a maximum number determined by the receptor
radius a (assumed on the order of nanometres). The relaxation of
the system to the equilibrium �N ¼ M�n is given by the kinetic
equation

dN tð Þ
dt
¼ c b; tð Þkþ M�N tð Þ½ � � k�N tð Þ; ð5Þ

where c(b,t) denotes the average concentration of ligand at radius
b from the origin. To capture the effect of diffusion on rebinding,
activity of the receptor array feeds back into the binding rate by
coupling with the diffusion equation. This is given in radial
coordinates by

@c r; tð Þ
@t

¼ DDrc r; tð Þ� dr r� bð Þ dN tð Þ
dt

ð6Þ

where Dr ¼ 1
rd� 1

d
@r rd� 1 d

@r

� �
is the radial part of the Laplacian,

and dr r� bð Þ ¼ d r� bð Þ
Sd� 1j jbd� 1 is the radial delta function. The last

term in equation (6) corresponds to the local change in
concentration from binding and unbinding events. In this
representation, step changes in N(t) from receptor activity result
in impulses to the concentration corresponding to single
molecules, which we average over the array. The resulting
symmetry means the solution to this equation can be directly
identified with the radial average that determines the binding rate
in equation (5). In Supplementary Note 2, we use the 2D problem
to illustrate that for large enough M, and Rca, explicitly
retaining the information in the model about the location and
activity of individual receptors does not affect the results.
Intuitively, this is because changes in the total state N(t) are
comprised of many opposing binding/unbinding events distrib-
uted over the array, each contributing little in isolation. We also
note that setting M¼ 1 and replacing b with a gives a model for a
single receptor at the origin similar to that in ref. 12. We make
this interpretation in 1D, since in this case geometric constraints
preclude the consideration of an array of many receptors.

Through detailed balance �ckþ =k� ¼ eF=kBT , fluctuations
in the rate constants are related to fluctuations in the binding
energy via

dkþ
kþ
� dk�

k�
¼ dF

kBT
: ð7Þ

Thus, linearizing equation (5) at equilibrium gives a Langevin
description of occupancy

1
M�ckþ 1� �nð Þ

ddN tð Þ
dt

þ �ckþ þ k�ð Þ
M�ckþ 1� �nð Þ dN tð Þ� dc b; tð Þ

�c
¼ dF tð Þ

kBT
:

ð8Þ

This small noise approximation is valid when there are many
receptors, since then the fluctuations in occupancy will be small
compared with the mean. The 1D result, with its single receptor,
therefore comes with the caveat that less accuracy is expected in
the approximation. We examine this numerically below.

Fourier transforming in time, the components are related in
the frequency domain by

� ioþ �ckþ þ k�ð Þ
M�ckþ 1� �nð Þ

cdN oð Þ�
bdc b;oð Þ

�c
¼
cdF oð Þ
kBT

: ð9Þ

To determine the susceptibility and apply equation (4) requires
an expression for concentration fluctuations in the frequency
domain in terms of cdNðoÞ. It is here the dependence on the
domain of diffusion becomes becomes explicit and we are forced
to depart further from ref. 12. In infinite 3D space, this is handled
in refs 12,15–17 by Fourier transforming the diffusion equation in
both space and time, leading to a self-energy term S(o) arising
from the (spatial) inversion integral. In 3D, in the relevant low
frequency limit o-0, corresponding to long averaging times, the
resulting term quantifies the effect of diffusion as

tN 7!tN 1þ� 0ð Þð Þ; ð10Þ

where tN is the correlation time in the fully reaction limited case
(D-N)12.

However, in 1D and 2D the self-energy diverges as o-0,
which corresponds to slow decay in the time domain. This
implies that there are correlations that exist over extended
averaging times, which degrade the ability of the cell to make
independent measurements. At microscopic scales we can relate
this to Polya’s theorem for random walks on a d-dimensional
lattice, which states that walks are recurrent for dr2 and
transient for dZ3 (see Fig. 1). The divergence is avoided when we
impose a bounded domain on the system (which makes the
recurrence happen in finite time). We take Bd

R, the d-dimensional
ball of radius R, with an insulated boundary, as the domain of
diffusion of ligand. This brings an additional spatial, and hence
also temporal, scale to the problem. For a boundary at a distance
R from a receptor or array to influence binding activity requires
averaging times on the order of T4R2/2dD, determined by the
characteristic time for diffusion in d dimensions. We proceed in
this averaging time regime, although we return to this issue later.
For shorter times, as far as a cell making a measurement is
concerned, the system is indistinguishable from that of an
unbounded domain.

We consider equation (6) for rA[0,R] with the insulated
boundary condition @c r;tð Þ

@r j r¼R¼ 0. Sturm–Liouville theory allows
us to write the Green’s function for this problem in terms of the
eigenfunctions fk and eigenvalues l2

k of the Laplacian Dr. The
Green’s function is given by

G r; t; r0; t0ð Þ ¼ Y t� t0ð Þ
Sd� 1j j

X1
k¼0

fk rð Þfk r0ð Þ
fkk k2 e�Dl2

k t� t0ð Þ ð11Þ

where Y denotes the Heaviside step function and || � || is the L2

norm on [0,R] with respect to the weight function w(r)¼ rd� 1.
Thus, formally solving equation (6) through the Green’s function
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and Fourier transforming in time we obtain

bdc b;oð Þ ¼ �
cdN oð Þ

Bd
R

�� �� þ iocdN oð Þ
Sd� 1j j

X1
k¼1

1

� ioþDl2
k

f2
k bð Þ
fkk k2 : ð12Þ

Substituting into equation (9) and applying the FDT, we arrive
at

SN 0ð Þ ¼ 2M�ckþ 1� �nð Þ 1þM�R 0; b;Rð Þ½ �

�ckþ þ k�ð Þþ Mkþ 1� �nð Þ
Bd

Rj j

� �2 ; ð13Þ

with the real part of the analogous self-energy term

�R 0; b;Rð Þ ¼ kþ 1� �nð Þ
Sd� 1j jD

X1
k¼1

f2
k bð Þ

fkk k2l2
k

: ð14Þ

When there are sufficiently many ligand molecules that �c� M
Bd

Rj j,
we can neglect the second term in the denominator of
equation (13). Doing so, and using the equilibrium condition
�ckþ 1� �nð Þ ¼ k� �n, we arrive at a correlation time of

tN ¼
1

�ckþ þ k�
þ M�R 0; b;Rð Þ

�ckþ þ k�
: ð15Þ

This is a more general form of equation (10), in which all of the
dimensional and spatial dependence is encoded by the eigenfunc-
tions specific to the domain.

In each dimension we must evaluate the sum in equation (14).
The eigenfunctions are given on [0,R] by

1D : fk rð Þ¼ cos lkrð Þ 2D : fk rð Þ¼J0 lkrð Þ 3D : fk rð Þ ¼ j0 lkrð Þ
ð16Þ

where J0 and j0 are the Bessel function and spherical Bessel
function of the first kind of order 0. The eigenvalues are given by
l2

k ¼ zk
R

� �2
, where zk are the positive zeros of f0(z).

We derive closed forms for the sums in each case by
manipulating them so they are given in terms of generalized
Fourier series. Determining the functions represented by the
Fourier series then allows us to reconstruct the original
expressions (see Supplementary Note 1). This yields the solutions

1D : �R 0; b;Rð Þ ¼ kþ 1� �nð Þ
2D

R
3
� bþ b2

R

� �
ð17Þ

2D : �R 0; b;Rð Þ ¼ kþ 1� �nð Þ
2pD

ln
R
b

� 	
� 3

4
þ b2

R2

� �
ð18Þ

3D : �Rð0; b;RÞ ¼ kþ ð1� �nÞ
4pD

1
b
� 9

5R
þ b2

R3

� �
: ð19Þ

Then for booR, equations (3) and (15) give

1D :
dcrms

�c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ckþ 1��nð ÞT þ
R

3D�cT

s
ðsingle receptorÞ ð20Þ

2D :
dcrms

�c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

M�ckþ 1� �nð ÞT þ
1

pD�cT
ln

R
b

� 	
� 3

4

� �s
ð21Þ

3D :
dcrms

�c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

M�ckþ 1� �nð ÞT þ
1

2pD�cTb

s
: ð22Þ

These expressions give the fractional errors in concentration
measurement for long averaging times. The first term in each case
is a consequence of the Markovian switching of the receptor. The
influence of this can be reduced by increasing the number of
receptors in the array, up to a maximum set by the radii of the
receptors and the array. The second term is the unavoidable limit

set by the physics of diffusion, and sets an upper bound on the
precision of sensing. In all cases the error in the estimate
decreases as 1=

ffiffiffiffi
T
p

. In absolute terms, however, the influence of
diffusion is controlled by the spatial properties of the system
(as with the ‘tracking factors’ of ref. 20 for mean time to capture).
In 3D the size of the domain has little influence, and as R-N

the noise floor set by the second term is exactly that found in
ref. 18 for a sphere uniformly covered with receptors in infinite
space. In lower dimensions, due to the qualitative difference in
the statistics of diffusion, the measurement error is determined by
the averaging time as well as the relevant biological scale.

Central to the arguments of Berg and Purcell is that
concentration sensing is fundamentally limited by the diffusive
arrival of molecules to the counting device. As shown in ref. 30,
the fractional error for a cell that acts as a perfectly absorbing sink
can be derived by considering the average current of molecules to
its surface, dc=�c ¼

ffiffiffiffiffiffiffiffiffiffi
1=�JT

p
. In 3D, for a spherical cell of radius

booR the current is given by the Smoluchowski rate times the
concentration, �J ¼ 4pDb�c, so that dc=�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4pD�cTb

p
. As a

perfect absorber does not suffer counting noise in the form of
rebinding this represents the absolute noise floor. Equation (22)
shows that rebinding leads to a factor of

ffiffiffi
2
p

increase in noise, or
equivalently, an effective current J ¼ �J=2.

It turns out that exactly the same is true in 2D, except that the
expression for �J must be adjusted. There are several approaches
for determining an analogous particle current in 2D, which differ
by a small constant depending on the underlying geometry and
approximations used (ref. 31, page 152). We follow ref. 11, who
provided a calculation for the mean time to capture for particles
diffusing in a disc with a circular absorber at the origin. In the
limit that Rcb this is given (in our notation) as

�tc ¼
R2

2D
ln

R
b

� 	
� 3

4

� �
: ð23Þ

Thus we can approximate the average current to a circular
array inside a disc by �J ¼ �cpR2=�tc. In complete analogy with the
3D results, the expression dc=�c ¼

ffiffiffiffiffiffiffiffiffiffi
2=�JT

p
yields the second term

in equation (21), providing a simple summary of the influence of
rebinding for arrays in both 2D and 3D.

Simulations. We performed particle simulations using Brownian
dynamics in 1D and 2D to verify these results. In 2D,
we simulated an ensemble of particles in a disc of radius R with a
reflecting boundary. The diffusing particles interacted with 15
small receptor discs arranged in a uniform ring at the origin.
We generated a long trajectory of the sum of receptor states and
integrated the sample autocorrelation function to determine tN.
Parameters were chosen to be biologically relevant in the
intermediate reaction/diffusion limited regime captured by the
theory. We plot SN(0)¼ 2tNhdN2i with the contribution from
the reaction term plotted separately as a baseline.

The effect of diffusion on noise in the 2D system is shown in
Fig. 2, both in terms of domain size and the diffusion coefficient.
The logarithmic dependence on domain size is clear (Fig. 2a), and
we find excellent agreement between theory and simulation even
with this relatively small array. As predicted by the theory, the
noise decreases rapidly with increasing speed of diffusion as
molecules are cleared more quickly from receptors after
unbinding (Fig. 2b). Reducing the ligand concentration, we find
that the macroscopic treatment of diffusion in the theory
yields accurate results down to �c ¼ 10 mm� 2 and even lower
concentrations (Supplementary Fig. 1).

We noted earlier that the single receptor result in 1D was not
expected to be as accurate as those for multiple arrays. In light of
recent 3D results using alternate methods18,19, we anticipated that
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an extra dependence on mean occupancy may be lost in the
linearisation (equation (8)). We simulated a single receptor on a
line segment of length L, both to confirm the spatial dependence
of the result and to test the closeness of the approximation.
The predicted linear increase in noise with domain size is shown
in Fig. 3a, showing close agreement under these parameters
(�n ¼ 0:5). We tested the dependence on mean occupancy by
varying the concentration about �c ¼ KD. Some discrepancy with
the theory is seen, with an underestimation of the noise for
�no0:5. However, the differences are small and do not affect the
interpretation of our results.

We used the strong spatial dependence and computational
simplicity of the 1D problem to probe the regime of averaging
times ToR2/2D. In ref. 26 an alternate approach in 1D yielded an
optimal estimate for sensing by a single receptor in an unbounded
domain of

dcrms

�c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ckþ 1� �nð ÞT þ
2
p

1ffiffiffiffiffiffiffiffiffi
2DT
p

�c

s
: ð24Þ

In this case temporal correlations that arise from diffusion lead
to a deleterious dependence on averaging time. We recover this
expression almost exactly from equation (20) with an effective
domain size Reff ¼

ffiffiffiffiffiffiffiffiffi
2DT
p

, consistent with the splitting of
averaging time regimes. To investigate this numerically we
estimated the variance dN2

T


 �
by making the measurement given

by equation (1) for 3,000 trajectories of fixed averaging times

T¼ 3s and T¼ 4s (Fig. 4). When the domain is large, the variance
becomes independent of L¼ 2R and is bounded below by the
optimal estimate for the unbounded domain. However, once the
boundary becomes close enough to suppress the effects of
recurrence at R �

ffiffiffiffiffiffiffiffiffi
2DT
p

, the noise decreases linearly. Moving to
2D, substituting Reff ¼

ffiffiffiffiffiffiffiffiffi
4DT
p

into equation (21) yields an
averaging time dependence of the diffusion noise that is bounded
between the 1D and 3D cases. Written in full this has the form

dcrms

�c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

M�ckþ 1� �nð ÞT þ
1

pD�cT
ln

ffiffiffiffiffiffiffiffiffi
4DT
p

b

� 	
� 3

4
þ b2

4DT

� �s
:

ð25Þ

We predict that, as in 1D, this represents a lower bound for the
noise in large domains or for shorter averaging times. We note
that the logarithmic term in this expression is of a similar form to
the result of ref. 27 in the case where the averaging time is much
shorter then the characteristic time for endocytosis of ligand.

Biological implications. The results above reveal the competing
factors that contribute to the quality of chemosensation. The
implications of this in 3D have been discussed previously, with
evidence suggesting that bacterial systems, with averaging times
on the order of seconds, may be operating close to the physical
limit11,12. Our results show that in 3D the simplifying assumption
of an unbounded domain is benign in most biological cases. We
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Figure 2 | Simulations of a ring of 15 receptors in 2D. Predicted value of SN(0)¼ 2tNhdN2i (blue lines) is plotted against simulations (red circles),

demonstrating the effect of domain size (a) and the diffusion coefficient (b). The component of the prediction due to reaction noise alone is plotted as a

baseline (black lines). Error bars are s.d. from n¼ 10 simulations. Parameters: �c ¼ 150mm� 2, �n ¼ 0:5, kþ ¼ 2mm2 s�1, k� ¼ 300 s�1, a¼ 10 nm,
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over a range of mean occupancies (b). Error bars are s.d. from n¼ 10 simulations. Parameters: �c ¼ 20mm� 1, kþ ¼ 10mm s� 1, k� ¼ 200 s� 1, a¼ 5 nm,

D¼ 1mm� 2 s� 1 and �n ¼ 0:5 (a), L¼ 1mm (b).
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now consider some examples of low-dimensional sensing to draw
out the dependencies that are most relevant in determining
sensing precision under biological parameters. A key question is
the extent to which noise limits persist in 2D, where processes
such as juxtacrine signalling occur over minutes, but diffusion can
be extremely slow. We consider three examples: DNA binding,
natural killer cells in the immune system and axon guidance.

A 1D problem that has attracted notice26 is based on the
observation that molecules slide along DNA. This type of two-
stage capture has been proposed as a mechanism for increasing
the efficiency of gene transcription, as it provides a larger effective
target for transcription factors diffusing in the cytoplasm6.
Treating the DNA molecule as infinitely long, the noise floor
for measurement in 1D is given in ref. 26 by the second term in
equation (24). The slow decrease in error with averaging time
represents the penalty for averaging the signal for a time
shorter than the correlation time, which, in this case, is infinite.
Reference 26 showed that this noise cost substantially reduces the
benefit of two-stage capture. However, following the calculations
in ref. 26 in the regime in which 1D diffusion dominates, using
equation (20) we find that for an average sliding length b on a
DNA segment of length L, the effective target size for the arrival
of transcription factors from the bulk is given by aeff � b b

2L

� �
.

That is, the size of the binding site is replaced by the sliding
length scaled by the relative domain size. Because the target size
strongly controls the noise in 3D, it is the relevant biological scale
that determines the efficiency. For example, if transcription
factors with sliding lengths bE10–100 nm (ref. 26) are targeting
an exposed promoter site in a nucleosome-depleted region of
length LE50–100 nm (ref. 32) the noise reduction will be
considerable, and greater still with mixing in the 3D bulk. This
example demonstrates that all of the spatial properties of the
system need careful consideration when moving to lower
dimensions.

An example in which fast and reliable 2D sensing is a necessity
is the inhibition of the cytotoxic response of natural killer cells in
the immune system. Upon conjugation with a target cell, natural
killer cell inhibitory receptors rapidly form microclusters, where it
is suggested inhibitory signals from ligation of cognate major
histocompatibility complex (MHC) class I protein are locally
balanced against activating signals33,34. When MHC expression is
below a threshold, activating signals lead to maturation of the
synapse and lysis of the target cell. This serves as a defence against
virally infected or cancerous cells that have down-regulated
surface levels of MHC, whose role is to present antigens to
T-cells. The canonical experimental system involves the
binding of MHC protein HLA-C by inhibitory killer-cell

immunoglobulin-like receptors (KIRs). Compared to similar 2D
receptor–ligand systems, binding is very low affinity (minimal
estimates k�E2 s�1), suggesting that the concentration
measurement is diffusion limited by design35. The diffusion
coefficient of GFP-tagged HLA-C in the membrane of a human
B-cell line is DE0.3 mm2 s�1 (ref. 36). A sharp threshold between
life and death of target cells interacting with natural killer cells
has been observed in vitro at HLA-C concentrations on the order
of �c � 100mm�2 (refs 37,38), demonstrating that natural killer
cells are capable of reliably discriminating between cells that have
a 10% difference in concentration. To estimate the noise floor, we
use a disc of radius R¼ 10 mm to represent the membrane of an
(unwrapped) target cell, and b¼ 0.05–0.5 mm the size of the
microcluster that determines the flux of ligand across the
receptors. Under these parameters, within the first two minutes
of conjugation an optimal estimate could be formed with a
fractional error dc=�c � 2% , which depends only weakly on the
size of the cluster. The signal integration in this case may be
provided by the level of activation of downstream components
such as SHP-1 or Vav1. Although the specifics of decision
making in natural killer cells are unknown, detailed simulations
of the signalling network that employ the process of equilibrium
binding we consider here have reproduced profiles of Vav1
activity consistent with experimental data and the threshold
response to MHC39,40. The fast receptor–ligand kinetics
and modest limitations placed by noise from diffusion make
this a viable mechanism for efficient decision making in
the early synapse. It will be interesting to compare this
performance to that of other possible hypotheses as to the
sensing mechanism.

In ref. 27, the authors give the example of axon guidance in
retinotectal map formation to illustrate their 2D results. This is a
paradigmatic problem of chemosensing, in which the tips of
developing axons expressing Eph receptors navigate by sensing
ephrin concentrations on the membranes of tectal cells over
which they crawl. It is suggested in ref. 27 that noise from
diffusion limits the growth rate of axons in this system. However,
a rough estimate from equation (21) shows that this is unlikely,
taken on its own. On reaching the tectum, axon growth slows to
rates of 0.2–0.3 mm min�1 (refs 41,42). If the limiting factor for an
axon navigating over a bed of tectal cells each B10 mm in
diameter was measurement noise, then the noise would need to
be severe. For the spatial parameters, we take R¼ 10mm to be the
effective radius of an unwrapped tectal cell, and b¼ 0.1 mm for
the radius of a small receptor array of the width of a filopodium.
Ephrin-As are GPI-linked, so we expect relatively fast diffusion in
the range D¼ 0.1–1mm2 s� 1. For concentrations spanning
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Figure 4 | Two regimes of averaging time dependence in 1D. The measurement variance dN2
T


 �
is estimated from three thousand trajectories with

fixed averaging times T¼ 3 s (a) and T¼4 s (b) (red circles). When T4R2/2D the boundary suppresses noise from diffusion, consistent with

equation (20) (blue lines). For T o R2/2D the noise becomes independent of domain size and is bounded below by equation (20) with an effective domain

size Reff ¼
ffiffiffiffiffiffiffiffiffi
2DT
p

(black lines). Parameters: as in Fig. 3a.
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�c ¼ 50� 100 mm� 2, a measurement could in principle be made
with a fractional error of dc=�c � 1� 5% in only 2 min. While
this is insufficient to explain axon growth rates, measurement on
this time scale is consistent with the lifetime of individual
filopodia as they probe the environment. A model of sensing that
is more targeted towards the specifics of axon guidance will bring
better understanding of the role of diffusion, and indeed the slow
kinetics of Eph-ephrin binding, in this system.

These examples use the results we have derived to illustrate
that, under biologically relevant parameters, accurate sensing can
be achieved over measurement times consistent with behaviour.
While a physical limit persists, a finite domain of diffusion
suppresses the effects of recurrence so that the noise decreases as
1=

ffiffiffiffi
T
p

, just as it does in 3D. Although the diffusion coefficients of
membrane proteins span several orders of magnitude, it is
interesting to note that the ligands in the systems above are found
at the high end of this range. HLA-C contains only a single
transmembrane domain and Ephrin-As are GPI-linked, allowing
for high mobility in both cases. Fast diffusion naturally reduces
noise as in Fig. 2b, and confers the additional benefit of bringing
the measurement into the 1=

ffiffiffiffi
T
p

regime of noise reduction much
sooner. This makes the speed of diffusion the key parameter in
the accuracy of 2D sensing, since unlike in 3D there is only a
weak dependence on the size of the receptor array. An array in
2D need only be so large as to accommodate enough receptors to
average away the reaction noise.

Discussion
We used the fluctuation dissipation theorem to make explicit the
spatial contribution to noise in chemosensing in terms of both
dimensionality and domain size. Consistent with intuitions
derived from Polya’s theorem, we find a marked increase in
temporal correlations in receptor activity in 1D and 2D systems
compared with 3D; however, these effects are substantially
mitigated when the domain is bounded. For a single receptor in
1D, the correlation time increases linearly with domain size, and
the influence of the size of the target is minimal. By contrast, in
3D, the correlation time depends weakly on the domain size, and
decreases with the size of the array. Wedged in between in 2D, the
‘critical dimension’ for diffusion, we find these parameters in
competition, though muted with a logarithmic dependence. The
effect of target size can be understood in terms of the original
arguments of refs 11,20: in 3D a larger array provides a more
effective sampling of the space. In lower dimensions, the size of
the target is likely to be less important, as the statistics of
diffusion should see molecules counted regardless.
Counterintuitively, a boundary that forces molecules to remain
near the receptors decreases the influence of temporal
correlations, because the power of these correlations is pushed
to higher frequencies which can be safely averaged away.

We make some simplifying assumptions in deriving these
results. In writing equations (5) and (6) in terms of the average
behaviour of the system, we have ignored the influence of any
spatiotemporal correlations that may arise between receptors.
However, the close agreement of the theoretical result with
simulations of an array of discrete receptors in 2D suggests this is
not a substantial factor. We have not explicitly considered the
diffusion of receptors in the model. This simplified model allowed
us to extract the essential features of noise limits across
dimensions, and provides a useful point of reference for studying
more dynamic features of receptor clustering in future work. For
individual receptors diffusing within an array, or over the surface
of an entire cell in 3D, we note that the governing equations still
hold on average. If an array of receptors is itself moving with
respect to the domain, such as the drift of a microcluster in the

immune synapse, we would expect further noise reduction to a
degree consistent with the increased flux of ligand. As long as
motion of the cluster is slow relative to the motion of individual
ligand molecules, the effect should be small. A fundamental
assumption in this and most previous work is that a measurement
is made by time averaging over receptor states. Analogous high-
frequency filtering of the signal can be achieved, for example, by
downstream processes that occur at finite rates. In 2D we have
found that averaging times on the order of minutes are required,
which raises the interesting question of what mechanisms might
implement this operation. While beyond the scope of this work, if
this line of inquiry imposes a constraint on signal averaging this
would naturally increase the noise floor. The results of the 2D
particle simulations agreed well with the theory over a
physiological range of ligand concentrations spanning
�c ¼ 5� 150mm�2. We do not consider here the limit of low
concentrations in which the discrete nature of individual
molecules becomes relevant. The methods employed by
refs 18,19, which are inherently more microscopic, may be
better suited to this regime. Recent work using similar techniques
in the technically demanding 2D case has provided relevant
quantities such as isolated pair survival probabilities and reaction
rate coefficients24,25. Extensions of this work in 2D will bring
greater understanding to such problems as antigen sensing by
T-cells, and we look forward to the insights gained from
comparison with the results we have presented here.

The advantage of the thermodynamic method of ref. 12 that we
have adopted here is the analytical freedom of working with a
macroscopic description of receptor–ligand binding. We
employed a simple and transparent numerical approach which
shows that this gives a good representation of the system,
particularly for multiple receptor arrays. Our treatment of
concentration fluctuations as a boundary value problem brings
further opportunities. For instance one can study the implications
for gradient sensing directly by employing boundary conditions
that give the desired steady-state concentration. Another inter-
esting possibility is to study the noise in second messenger
concentration in the intracellular 3D problem by using surface
receptor activity to describe a fluctuating source on the boundary.

Methods
Simulations. We initialize an ensemble of non-interacting particles at a given
concentration on a line segment of length L or disc of radius R centred at the
origin. Initial positions are drawn from a uniform distribution. At each time
step Dt, the ith coordinate of the jth particle is updated by

xi
j tþDtð Þ ¼ xi

j tð Þþ
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

Fi
j tð Þ ð26Þ

where D is the diffusion coefficient and Fi
j ðtÞ is drawn from a normal distribution.

In 1D if a particle crosses the boundary of the domain it is reflected back by

xi
j tþDtð Þ ¼ xi

j tð Þþ sgn Fi
j tð Þ

� 

L� x̂i

j tþDtð Þ
��� ���� xi

j tð Þ
��� ���� 


ð27Þ

where x̂i
j tþDtð Þ is the coordinate of the point across the boundary. In 2D we

reflect the particle about the inward pointing normal at the point of intersection
of the line

l sð Þ ¼ xi
j tð Þþ s x̂i

j tþDtð Þ� xi
j tð Þ

h i
ð28Þ

with the boundary of the disc.
Receptors with binary states nm(t) are each represented by a capture radius a at

the centre of the line segment in 1D or in a uniform ring of radius b in 2D. Each is
initialized as nm(t)¼ 1 with probability �n, in which case a random particle is
repositioned to the centre of the receptor. At each time step, if nm(t)¼ 0 a particle
within radius a binds to the receptor with probability pbind ¼ kþ Dt

A , where A¼ 2a in
1D or A¼ pa2 in 2D. If binding is successful the particle is held at the centre
of the receptor. If nm(t)¼ 1, the bound particle is released with probability
punbind¼ k�Dt. The time step Dt was chosen such that the probability of binding
and unbinding events in a single time step was low over a range of parameters. This
also ensured that a diffusing particle would take several timesteps to clear a
receptor. These considerations led to Dt¼ 10� 5 s in 1D and Dt¼ 5� 10� 6 s in
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2D, which were used for all simulations. We confirmed that the results were robust
to reducing the time step any further.

We generate a long trajectory of the sum N(t)¼
P

m nm(t) over time T and then
determine the correlation time tN by integrating the sample autocorrelation
function of the trajectory. The simulation time was determined from preliminary
data, where we estimated by eye the length of trajectory required for the evaluation
of tN to converge. For most parameter values (Fig. 2b, Fig. 3b, Supplementary
Fig. 1) T¼ 100 s was sufficient. Capturing the effects of domain size required longer
simulation time. Presumably this is because the effect of the increase in domain size
is to add to the tail of the correlation function, which requires precise estimation to
be picked up in the integral. As such, all data points in Fig. 2a and Fig. 3a of the
main text were generated from simulation times T¼ 200s, except those
corresponding to L¼ 1.75 mm and L¼ 2 mm in Fig. 3a. These parameters required
T¼ 400 s and T¼ 600 s, respectively. We confirmed that longer simulation times
did not increase the estimate of tN for smaller values of L.

All simulations were performed using MATLAB (Mathworks). The simulation
time required to generate a 100 s trajectory varied between 2 min in 1D with 1
receptor and 5 particles, to several hours in 2D with 15 receptors and 400 particles.
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